Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 471: 134256, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38640673

ABSTRACT

A new method for the determination of 26 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in marine sediment pore water was developed using online solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. The proposed method requires only about 1 mL of pore water samples. Satisfactory recoveries of most target PFASs (83.55-125.30 %) were achieved, with good precision (RSD of 1.09-16.53 %), linearity (R2 ≥ 0.990), and sensitivity (MDLs: 0.05 ng/L-5.00 ng/L for most PFASs). Subsequently, the method was applied to determine PFASs in the sediment pore water of five mariculture bays in the Bohai and Yellow Seas of China for the first time. Fifteen PFASs were detected with total concentrations ranging from 150.23 ng/L to 1838.48 ng/L (mean = 636.80 ng/L). The ∑PFASs and PFOA concentrations in sediment pore water were remarkably higher than those in surface seawater (tens of ng/L), indicating that the potential toxic effect of PFASs on benthic organisms may be underestimated. PFPeA was mainly distributed in pore water, and the partition of PFHpA (50.99 %) and PFOA (49.01 %) was almost equal in the solid and liquid phases. The proportions of all other PFASs partitioned in marine sediments were significantly higher than those in pore water.

2.
Mar Pollut Bull ; 201: 116250, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479322

ABSTRACT

Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.


Subject(s)
Marine Toxins , Mollusk Venoms , Oxocins , Antarctic Regions , Okadaic Acid/analysis , Indian Ocean
3.
Chemosphere ; 341: 140109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689146

ABSTRACT

To date, understanding the fate of lipophilic marine algal toxins (LMATs) in benthic environments on which cultivated shellfish depend is still limited. In this work, the occurrence, concentration levels, and phase distributions of LMATs in the benthic environments of two mariculture sites (Sishili and Rongcheng Bays) in China were investigated for the first time. Five LMATs: okadaic acid (OA), pectenotoxin-2 (PTX2), gymnodimine, 13-desmethyl spirolide C, and azaspiracid-2 (AZA2) and three derivatives: dinophysistoxin-1 isomer (DTX1-iso), pectenotoxin-2 seco acid, and 7-epi- pectenotoxin-2 seco acid were detected in different environmental samples. OA and PTX2 were the dominant LMATs in the bottom boundary layer (BBL) and sediment, whereas AZA2 was present in the sediment only. Notably, DTX1-iso was found for the first time to be widely distributed in the benthic environments of the bays. In BBL, the average proportion of LMATs in the dissolved phase (99.20%) was much higher than in the particulate phase (0.80%). Partition of LMATs was more balanced between sediment porewater (57.80% average proportion) and sediment (42.20%). The concentrations of ∑LMATs in the BBL seawater ranged from 19.09 ng/L to 41.57 ng/L (mean of 32.67 ng/L), and the spatial distribution trend was higher in offshore than nearshore. ∑LMATs concentrations in the sediment and porewater of the two bays ranged from 17.04 ng/kg to 150.13 ng/kg (mean of 53.58 ng/kg) and from 8.29 ng/L to 120.58 ng/L (mean of 46.63 ng/L), respectively. Their spatial distributions differed from those in BBL, showing a trend of high concentrations in areas with heavy land-based inputs. ∑LMATs concentrations in porewater were significantly higher than those in BBL seawaters, suggesting that the potential hazards of LMATs to benthic organisms may be underestimated.


Subject(s)
Bays , China
4.
Sci Total Environ ; 857(Pt 3): 159682, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302405

ABSTRACT

The Bohai Bay as a typical semi-enclosed bay in northern China with poor water exchange capacity and significant coastal urbanization, is greatly influenced by land-based inputs and human activities. As a class of pseudo-persistent organic pollutants, the spatial and temporal distribution of Pharmaceuticals and Personal Care Products (PPCPs) is particularly important to the ecological environment, and it will be imperfect to assess the ecological risk of PPCPs for the lack of systematic investigation of their distribution in different season. 14 typical PPCPs were selected to analyze the spatial and temporal distribution in the Bohai Bay by combining online solid-phase extraction (SPE) and HPLC-MS/MS techniques in this study, and their ecological risks to aquatic organisms were assessed by risk quotients (RQs) and concentration addition (CA) model. It was found that PPCPs widely presented in the Bohai Bay with significant differences of spatial and seasonal distribution. The concentrations of ∑PPCPs were higher in autumn than in summer. The distribution of individual pollutants also showed significant seasonal differences. The high values were mainly distributed in estuaries and near-shore outfalls. Mariculture activities in the northern part of the Bohai Bay made a greater contribution to the input of PPCPs. Caffeine, florfenicol, enrofloxacin and norfloxacin were the main pollutants in the Bohai Bay, with detection frequencies exceeding 80 %. The ecological risk of PPCPs to algae was significantly higher than that to invertebrates and fish. CA model indicated that the potential mixture risk of total PPCPs was not negligible, with 34 % and 88 % of stations having mixture risk in summer and autumn, respectively. The temporary stagnation of productive life caused by Covid-19 weakened the input of PPCPs to the Bohai Bay, reducing the cumulative effects of the pollutants. This study was the first full-coverage investigation of PPCPs in the Bohai Bay for different seasons, providing an important basis for the ecological risk assessment and pollution prevention of PPCPs in the bay.


Subject(s)
COVID-19 , Cosmetics , Water Pollutants, Chemical , Animals , Humans , Seasons , Environmental Monitoring/methods , Bays , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry , Cosmetics/analysis , Risk Assessment , Pharmaceutical Preparations , China
5.
J Hazard Mater ; 437: 129264, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35728322

ABSTRACT

The contamination status and transport of per- and polyfluoroalkyl substances (PFASs) in the seawater of the Indian Ocean (IO) and an adjacent subregion of the Northwest Pacific Ocean (NWPO) were investigated. Eight legacy PFASs were widely distributed in the surface seawater, and perfluoroheptanoic acid (PFHpA) and perfluorooctanoic acid (PFOA) were the two predominant PFASs. ΣPFAS concentration decreased in the following order: NWPO>Joining area of Asia and Indian-Pacific Oceans (JAIPO)>Northeast Indian Ocean>Southwest Indian Ocean. Hexafluoropropylene oxide-dimer acid, a replacement surfactant for PFOA was extensively detected in the IO (~34.8 pg/L) for the first time, showing an early sign of emerging PFAS spread in global open oceans. Eight depth profiles across the JAIPO (down to 5433 m depth) revealed a "surface-enrichment" and "depth-depletion" pattern for PFASs in the water column, and two noticeable fluctuations were mainly located at depths of 150-200 and 200-500 m. Physical processes, including eddy diffusion, and the origin and trajectory of water mass were crucial factors for structuring PFAS vertical profiles. Mass transport estimates revealed a remarkable PFOA contribution through the JAIPO to IO carried by the Indonesian Throughflow, and a nonnegligible PFHpA contribution from Antarctic Immediate Water to deep water of the JAIPO driven by thermohaline circulation.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , China , Environmental Monitoring , Fluorocarbons/analysis , Indian Ocean , Water , Water Pollutants, Chemical/analysis
6.
Chemosphere ; 300: 134378, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398068

ABSTRACT

The Bohai Sea is one of the most polluted hotspots by per- and Polyfluoroalkyl substances (PFASs) in the world and studies on the vertical distribution of PFASs at different water layers and phase partitioning between water and suspended particulate matter (SPM) were still limited. 23 legacy and emerging PFASs were investigated in seawater and SPM throughout the Bay in this study. The average concentrations of ∑PFASs in seawater were 48.21 ng/L and 52.71 ng/L during the periods of wet and normal water, respectively. In general, the concentrations of ∑PFASs in surface water were higher than that in deep water. Legacy PFASs in seawater were dominated by PFOA and short-chain PFASs, while the emerging alternative HFPO-DA was detected in the whole water layer of the Bohai Bay with an average concentration of 1.09 ng/L. The spatial distribution showed that ∑PFASs were higher nearshore than inside the bay and higher in the south than that in the north of the bay. The average concentration of ∑PFASs in SPM was 9.02 ng/g. Long-chain PFASs and the emerging alternative 6:2 Cl-PFESA accounted for the major contaminants. The partition coefficients log Kd and φspm-w showed a linear positive correlation with carbon chain length. Preliminary risk assessments revealed that the ecological risk of common PFASs in the Bohai Bay was low, while PFOA was at moderate risk. The principal component analysis demonstrated that the production process of traditional fluorochemical factories, fire-fighting and emerging electroplating industries were the main sources of PFASs. This was the first comprehensive survey of emerging PFASs in different water depths and in SPM of the Bohai Bay during different seasons, which provided important scientific data for studying the ecological risks and pollution prevention of PFASs.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Bays , China , Environmental Monitoring , Fluorocarbons/analysis , Particulate Matter/analysis , Risk Assessment , Water/analysis , Water Pollutants, Chemical/analysis
7.
Aquat Toxicol ; 242: 106042, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34861574

ABSTRACT

The roles of allelopathy for succession of marine phytoplankton communities remain controversial, especially for the development of blooms. Physiological parameters measurement (Fv/Fm value, MDA content, SOD activity, Na+/K+, Ca2+/ Mg2+-ATPase activity, cell size, chlorophyll content, apoptosis and cell cycle) and whole transcriptome profiling analysis were used to investigate allelopathy effect of Skeletonema costatum on Karenia mikimotoi. Filtrate and extracts from S. costatum culture inhibited the growth of K. mikimotoi. Allelopathic effects were dose-dependent for filtrate culture and extract culture. K. mikimotoi scavenged excessive ROS and adapted to the stress fastly and easily, so oxidative damage was not the main cause of the growth inhibition. Allelochemicals of S. costatum were found to influence the structure and function of cell membrane of K. mikimotoi by damaging membrane structure till to cell necrosis, which caused high mortality. Coupled with the sensitivity of algal cells to environmental stress and restricted cell cycle, allelopathy was suggested to be deeply detrimental to the development of competition algal population.


Subject(s)
Allelopathy , Diatoms , Dinoflagellida , Gene Expression Profiling , Transcriptome
8.
Environ Pollut ; 265(Pt A): 115011, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32563144

ABSTRACT

Fourteen perfluoroalkyl substances (PFASs) in fishery organism, surface seawater, river water, rainwater, and wastewater samples collected from Jiaozhou Bay (JZB) in China and its surrounding area were determined to understand their contamination status, sources, health risk, and causes of spatiotemporal variations in the aquatic environment of a temperate bay adjacent to a metropolis. The total concentration of PFASs in 14 species of fishery organisms ranged from 1.77 ng/g to 31.09 ng/g wet weight, and perfluorooctane sulfonate (PFOS) was the dominant PFAS. ∑PFASs concentration in surface seawater ranged from 5.54 ng/L to 48.27 ng/L over four seasons, and dry season (winter and spring) had higher levels than wet season (summer and autumn). Perfluorooctanoic acid (PFOA) was the predominant individual PFAS in seawater, indicating that notorious C8 homologs remained the major PFASs in this region. The seasonal variation in seawater concentrations of three major PFASs, namely, PFOA, perfluoroheptanoic acid, and perfluorononanoic acid, was similar to that of ∑PFASs. However, the seasonal variation of PFOS concentration was different from that of ∑PFASs, with the lowest in winter and the highest in spring. In general, seasonal variations of terrigenous input and water exchange capacity were the main reasons for the spatiotemporal variation of PFASs in the aquatic environment of JZB. Moreover, bioselective enrichment for individual PFAS affected the partition of PFASs in different environment medium. Wet precipitation, sewage discharge, and surface runoff were the main sources of PFASs in this area. Nevertheless, the contribution of different sources to individual PFAS indicated a clear difference, and wastewater and river water were not consistently the most important source for every PFAS. Preliminary risk assessment revealed that the consumption of seafood, especially fish, from JZB might pose a certain extent of health risk to local consumers based on their estimated daily intake of PFASs.


Subject(s)
Alkanesulfonic Acids/analysis , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Bays , China , Environmental Monitoring , Risk Assessment , Rivers
9.
Sci Total Environ ; 612: 931-939, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28886545

ABSTRACT

For the first time, the composition, concentration and distribution characteristics of typical lipophilic marine algal toxins (LMATs) are investigated in surface seawater, suspended particulate matter (SPM) and sediments from the Yellow Sea and the Bohai Sea, China. Pectenotoxin-2 (PTX2) and okadaic acid (OA) were detected in offshore surface seawater samples (n=67) of the Yellow and Bohai Seas, and PTX2 was found in higher concentrations than OA. The concentrations of PTX2 were between 0.49 and 14.14ng/L. OA, dinophysistoxin-1(DTX1), PTX2 and gymnodimine (GYM) were detected in the nearshore surface seawater samples (n=20) of the Haizhou Bay of the Yellow Sea. OA concentrations were between 11.47 and 55.85ng/L. There was a large degree of variation in the concentrations of DTX1, from

Subject(s)
Environmental Monitoring , Marine Toxins/analysis , Water Pollutants, Chemical/analysis , China , Geologic Sediments , Oceans and Seas , Particulate Matter , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...